# Steel alloys

## Category:

Ultra high wear resistance
High modulus
Low density
High damping capacity



# Steel alloy XMP-21

Steel alloy XMP-21 is made via a mechanically alloying powder process. This alloy shows excellent wear resistance comparable to Tungsten-Carbide. But it has fair machining characteristics in the annealed condition. XMP-21 has due to its composition a higher elastic modulus and lower density compared to other Steel alloys. Because of the very fine microstructure and homogenous Carbide distribution XMP-21 has very high fatigue strength.

#### **General properties**

#### **Comparison with Standard Steel M50**

• Ultra high wear resistance Advantages: - Higher modulus

• High modulus - Lower density

• Low density - Better wear resistance

**Disadvantages:** - More expensive

Chemical Composition: Fe-Cr-Mo-Al-Ti-C

#### **Mechanical properties**

| Alloy        | Temperature | UTS  | YS   | Elong. | Modulus | Hardness |
|--------------|-------------|------|------|--------|---------|----------|
|              |             | MPa  | MPa  | %      | GPa     | HRc      |
|              |             |      |      |        |         |          |
| Steel-XMP-21 | Rt          | 1683 | 1356 | 0.6    | 268     | 60-68    |

Fatigue resistance: >1100 MPa, rotating bending, 200°C

#### Physical data

Density: 6.87 g/cm³
CTE: 11x10^-6
Thermal conductivity: 23 W/mK

### **Applications**

- Piston pins
- Gear selector shafts
- Camshafts
- Gears
- Transmission shafts
- Shims

#### **Delivery form**

- Bars, Billets, Rectangular shapes, plates

Max. size, 210x140x1200mm.